Metric indexing to improve distance joins

Niels Nes, Wilko Quak, Martin Kersten

University of Amsterdam
{niels,quak,mk}@wins.uva.nl

Keywords: Multi-dimensional vectors, index structures, similarity, fuzzy queries, DBMS, Image

databases

Abstract

Database applications using large vector data
are often supported by spatial index structures
to locate spatially related objects. An impor-
tant query class deals with finding related object
pairs under a distance function. In this paper
we demonstrate that a light-weight indexing struc-
ture, based on the metric properties derived from
the distance function, is often sufficient to sup-
port this important class. It is of particular im-
portance as a temporary search accelerator while
processing compler queries. Moreover, it can be
used to speed up point and region queries for
low selectivities and, presumably, highly-skewed
spaces.

keywords: Multi-dimensional vectors, index
structures, similarity, fuzzy queries.

1 Introduction

An emerging class of database applications
heavily relies on spatial information, e.g. geo-
graphical and multi-media information systems.
The majority of queries involves exploration of
the spatial information, such as finding elements
in a given area. Furthermore, join queries over a
spatial domain often boil down to calculation of
a distance function to locate point pairs within
close vicinity of one-another. They are conven-
tionally implemented using a spatial index (like
R-tree) to filter candidate pairs.

In this paper we introduce a cheap and fast in-
dex structure to speed up such distance joins. In
particular, we demonstrate that an index struc-
ture based on the distance metric is both cheap
to construct and competitive in performance.

Because the index structure can be built very
fast and its storage overhead is minimal, it is it
a good candidate for on the fly construction as

part of a query processing plan. Since the index
structure captures the metric information to an-
swer distance joins directly, it reduces the num-
ber of times the expensive distance function is
called considerably, compared to a naive spatial
join evaluation.

The key property exploited is that distance
joins involve a well-defined, but expensive, (Eu-
clidean) distance function. Moreover, these func-
tions satisfy the mathematical triangular inequal-
ity property, i.e. the distance between two points
is always smaller or equal than the distance be-
tween these points and a third point.

Based on the triangular inequality it is possible
to build an index structure to speed up several
query classes, such as:

e point-match, for each A find the points
B positioned at the same location (e.g.
A.pos=B.pos).

e k-nearest neighbor, for each A find the k
nearest elements B under the distance func-
tion.

e §-search, find all B points within delta §
range away from A.

e J-join, find all A,B point pairs within delta
é range.

In this paper we ignore the point-match and k-
nearest neighbor queries, because they are special
cases of the d-search. The point-match can be
re-phrased as a delta-join with 6 = 0, while the
k-nearest neighbor can be implemented using a
binary traversal over delta values until k& values
have been obtained. The §-search is part of the
inner-loop of the d-join algorithm.

The remainder of this paper is organized as
follows. In Section 2 we review index structures
that deal with spatial joins in high dimensions.
Section 3 explains the use of the triangular in-
equality in a multi-dimensional space. In Section

4 the metric index data structure and algorithms
are explained. Section 5 provides a mathematical
estimation of the effectiveness of the new index
structure. Section 6 reports on experimentations
to validate the approach taken. Finally, in sec-
tion 7 we draw our conclusions and pointers for
future research.

2 Index Structures for Spatial

Joins

Most previous work on searching in multi-
dimensional spaces is concentrated on low dimen-
sional data-structures, such as R-tree [4] and and
K-D-trees [1]. These structures can be extended
to higher dimensions, but this results in two prob-
lems, a performance and effectivity degration.
The performance degrades because as the dimen-
sion increases the querying cost often increases
exponentially; the so-called dimensionality curse.
The index structures deployed become less effec-
tive as a pre-filter for selections and join opera-
tions.

This curse also stems from the metric effects
in higher dimensions, which leads to a cluster-
ing of objects at the ‘edge’ of the n-dimensional
space, while all points theoretical become placed
at ‘equal’ distance of any other point in this space.

The prime route explored in literature to tackle
the former deals with the scalability limitations of
most data structures. Examples considered here
are the X-tree the SS-tree and the TV-tree:

The X-tree [2] tackles the dimensionality prob-
lem by observing that the performance degrada-
tion in the R-tree based index structures is mainly
due to the high overlap between the nodes in the
R-tree itself. This overlap causes an increased
number of nodes to be visited when querying the
R-tree. The X-tree solves this problem by allow-
ing nodes of the X-tree to be bigger than one disk
block (the so-called supernodes) if a split node
would generate a high overlap. This technique
makes an X-tree behave like an R-tree in low di-
mensions, while in higher dimensions the join be-
havior converges to that of a nested loop.

Another data structure for indexing high-
dimensional vectors is the SS-tree [6]. The SS-tree
is an R*-tree based structure using bounding (hy-
per)balls instead of rectangles. In 2-dimentions
bounding circles are more appropriate for per-
forming similarity queries. Furthermore, they
store some additional statistical data in the nodes
to support various operations used in image re-
trieval.

The TV-tree [5] reduces the size of internal
nodes by projecting the data in internal nodes to
a lower dimension. By using different projections

in different parts of the tree, all parts of the orig-
inal vectors are used. If some dimensions of the
input data are more important than others a big
speedup can be gained. This is done by first pro-
jecting the data to these important dimensions.
It is unclear how well the TV-tree performs when
all dimensions are equally important.

Despite the progress reported in reducing the
storage/processing cost in moving to higher di-
mensional indices, these data structures are fo-
cussed on the spatial organization. We focus on
point and region-based retrieval operations. Our
key operation, d-joins, requires a relaxation of the
spatial joins supported by several systems. It be-
haves more like a theta-join within a spatial con-
text. The role of the index structures in this case
are primarily aimed at reducing the number of
candidates for consideration.

3 Triangular Inequality

As mentioned before, distance functions play
an important role in real life applications, e.g.
GIS, CAD/CAM, Image Retrieval and multi-
media applications. For example in GIS and
CAD/CAM applications require spatial queries,
like "find me the closest restaurant to a given
location” and ”find objects that are so closely
placed that they generate electro-static interfer-
ence”. Many content based text, image and
multi-media applications use similarity based
queries, like ”"find similar colored objects”. To
illustrate, the functions encountered in the areas
considered are:

1. The Great Circle Distance is used in GIS to
calculate the ’as the crow flies’ distance be-
tween two places in the world.

2. A distance function amongst customer pro-
files (time series) in the datamining area.

3. The Weighted Euclidean Distance over a vec-
tor space:
dV,W) =V -W)TAV -W) =
2o 205 Ay (Vi = W) (V; = Wj)

4. Histogram Intersection

AV, W) = 1 — 2™V, Wi)
>.:(Vi)

Most distance functions found are expensive to
calculate and, because they are called repeatedly
they contribute considerably to the total query-
ing cost. Our index structure aims to reduce the
number of calls to these functions in a naive im-
plementation of the d-join. This is achieved by

using the metric properties. The key to the solu-
tion proposed relies on the triangular inequality
relationship.

The mathematical properties for a metric, |zy|,
where z,y and z are multi-dimensional vectors,
are:

o Positivity |zy| > 0A |zz| =0
o Symmetry |zy| = |yz|
¢ Triangular inequality |zy| < |zz| + |zy]

It enables to set-up an index that is both effec-
tive (on low selectivities) and fast to construct.

3.1 Using the Triangular Inequal-
ity

The naive implementation of the envisioned §-
join is a nested loop. For each pair considered
the distance should be calculated. Since this re-
sults in many expensive calculations it becomes
mandatory to reduce candidate pairs to re-use re-
sults being calculated. This is achieved by taking
a reference point (or set of reference points) and
to calculate the distances between the reference
point and each vector in a join operand first.

Now consider a query looking for all points
within distance § from a query point ¢, i.e. all
points p with |pg| < §. The metric properties en-
ables reuse of distances calculated between p and
reference point r.

Assume that for points in our space we know
its distance to a reference point r. Then the query
|pg] < 6 could use this information as follows.
The triangular inequality provides us with |rg| <
|rp| + |pg|- So we have an upper bound |rq| <
|rp| + 8. Since also |pg| < |pr| + |rg| holds, we
also know that |pr| — § < |rq| holds. Using the
metric symmetry we can use |rp| directly, else we
could also store |pr|. Figure 1 shows the use of the
triangular inequality in the 2 dimensional case.

If the query point is already close to the refer-
ence point, we can remove all possible points with
large distance from r from consideration. They
typically fall behind the horizon of 2 % §. Alter-
natively, if the query point is far away from the
reference point we can remove all possible points
which are close to the reference point r.

4 Metric index structure

In this section we will explain how the metric
index structure is built and how it is used in the
select and join algorithms.

|ral-3

Figure 1: Circles

4.1 The reference points

There are various ways to select a reference
point: random, center of gravity, or middle point.
A randomly selected reference point would be the
prime choice considered when it is a priori known
that the space is large. The center of gravity
would be of interest if the space contains several
clusters. Then each cluster leads to a reference
point. Unfortunately, detection of clusters and,
subsequently, the reference point is expensive to
calculate. Instead we use the heuristic to take a
simple reference point.

Given a reference point, we calculate its dis-
tance with each point in the table. The points
are subsequently sorted by distance using a tree-
like structure. This will speed-up searching later
for elements at a given distance from the reference
point.

To illustrate the algorithms, we use on the in-
dex structure for a table of n-dimensional points
with a single reference point.

4.2 The optimized distance select

Selection using the metric index follows the
traditional route of pre-filtering; the index is used
to reduce the candidates to consider to solve the
d-select. The following pseudo code routine ex-
plains how this can be done.

delta-select (ps, q, 6){
select p from
select p from ps
where |pr| — 6 < |rq| < |pr|+0
where |pg| < §

The inner select selects all points p form the
point set ps where the distance of the reference
point r to the query point g is between |pr|—§ and

|pr| + 6. This identifies candidates in a cylinder
around the reference point. It can be solved with
a single lookup because we know the distance to
r. The outer select filters this set by checking
for the actual distance between p and gq.

Similarly, we can use the metric index to speed-
up the d-join using the generalized triangular in-
equality.

Ipg| < |pro| + |ror1] + ... + |rag]

delta-join (ps, gs, 6){
select p, q from
join p, q from ps, gs
where |[|pry| — |rpre| — 8] <|rqq]
< |pr| + |Tprq| +94
where |pq| < §

5 Effectiveness of the metric index

In this section we give an estimate on the ex-
pected hit ratio of the candidates selected, i.e. "Is
the metric index a good filter?”. This estimate is
only given for the case where one reference point
is chosen. All estimates in this section are further
based on the (simplifying) assumption that the
vectors are uniformly distributed in space; this
means that the size of a query result is linear with
the volume covered by the query. A formula for
the volume of a hyperball with dimension d and
volume r, denoted as V,. 4. First we give a for-
mula for balls with » = 1. This formula is defined
recursively where the volume in one dimension
is expressed in volumes of the lower dimensions.
The volumes in dimensions 1 and 2 are given:

21

Vipg =2, 7

Vip =m, Via=—Via—2
In fact Vi1 is the length of the interval [—1,1]
and Vj 5 is the area of the circle with radius 1.

The formula for balls with given r becomes:

d
Veia=1"Vig

The next step is to estimate the size of the
query result and the size of the filter set of the
range query with range § around query point ¢
with reference point r. The two dimensional case
of this query is depicted in Figure 1. Due to the
uniform distribution the size of the query result
is equivalent to the volume of a ball with radius
§ around point q. The candidate points (points
which pass the filter step) are all the points in the
(hyper)disc of all points with distance between
|rq| — & and |rq| + 6. Now the effectiveness of the

0.1

T
"sel0.1000"

"sel0.0100" -

s "sel0.0010" -

+ . "sel0.0001"

a1

0.001 |

effectiveness

0.0001

1le-05
0

15
dimension

Figure 2: Effectiveness

filter is the number of hits divided by the number
of candidates.

#hits Virgl,s
#candidates Vg rq)45 — Va,|rq|—s

5d
(Irql +6)¢ = (Irq| — 6)¢

In Figure 2 the effectiveness of a few selectiv-
ity values is shown. In this Figure we keep the
answer set constant by increasing § for higher di-
mensions. As can be seen, the filter effectiveness
degrades for high dimensions. But there are also
some aspects to take into account to make life
bearable in practice.

e In this analysis only one reference point is
taken into account. Improved gain comes
when more reference points are used, because
they break the cylinders into pieces. This
analysis will be done experimentally.

e The effectiveness of the filter is still good for
small query results. A situation likely to oc-
cur in large multi-dimensional applications.

e The uniform distribution assumption is not
likely to hold in practice. Clustered spaces
will lead to more opportunities to filter out
irrelevant points.

To assess the impact of the choice of the refence
point on the effectiviness, wel calculated the ex-
pected performance while varying the distance
|rq| between 0 and 0.1. In Figure 3 we plot the
effectiveness for various dimensions while fixing §
on 0.001.

Although the analysis in this section re-
inforced the existence of the dimensionality

0.001 | i Tregl e

effectiveness

0.0001 | Sa

1e-05 |-

R %
106 s s s s i s s s
0.1

0.2 0.3 0.4 0.5 0.6
distance

Figure 3: Impact of location reference point

curse when dealing with distance joins in high-
dimensional spaces, it also indicates good be-
havior for low selectivity values and a small §.
We conjuncture that it will further improve with
sparsely (skewed) populated in real-life applica-
tions.

One way to improve the filter effectiveness of
the metric index is the use multiple reference
points. For two reference point, the filtering step
becomes a windowing query on points in IR?. See
Figures 4 and 5. Adding more reference points
yields windowing queries in n-dimensional space.
In fact this leads to filter step which converts
an n-dimensional range query into a windowing
query of any dimension (depending on the num-
ber of reference points).

6 Experimentation

To assess the performance of the metric index
in a real setting, we have extended the Monet
[3] system with a software module for §-joins, J-
select, and a metric index. Subsequently, we con-
ducted experiments on data sets generated using
a standard pseudo-random number generator. All
vector fields domains are [0..1).

The first experiment conducted was geared to
get a handle on the cost of the distance function.
Therefor, we measured the execution time of a
naive implementation —with a simple loop— of the
distance select. The results are shown in Figure
6. It shows the execution time of a distance select
for databases sizes ranging from 10 to 100k with
vectors of dimensions 2,4,8,16,32 and 64. All se-
lects were done with an equal distance of 0.1. So
only very close points were retrieved.

The cost of this naive loop could be invested in
construction of a metric index. Once it is avail-
able, it can be used as a pre-filter. Figure 7 shows

1400

1200 1

1000

800

time(ms)

600 |

400

200 |

0
0.0001 0.001 0.01
selectivity

Figure 10: increasing selectivity

the results against the same query using the index
structure. The benefit from the index is evident.
For the low selectivity considered it leads to an
overall improvement performance. Since the in-
vestement in the index structure are already re-
covered with 2 §-selects.

For the 4-join a similar experiment was con-
ducted. Figures 8 and 9 show the results of the
naive nestedloop- and metric index based imple-
mentations. The cost of metric index construc-
tion is neglectable compared to the gain. Again
the benefit of the index is evident.

To assess the degradation caused by increasing
the result size we conducted an experiment with
fixed database size of 100k and with dimensions 2
to 64, but with increasing query selectivity range-
ing from 0.01% to 1.0%. Figure 10 shows the
execution times of the distance selects using the
index structure. It clearly shows the reduced in
usability of the index structure for larger answer
sets. Only for low dimensions the index structure
seems effective. This stems from the uniform gen-
erated data.

To show that the index structure is cheap al-
ternative for spatial queries in low dimensions we
also compared our method with the R-tree data
structure. Because our current version of the R-
tree only works on two-dimension vectors, this
test is only run on two dimensional data. The
results of this experiment are show in Figures 11
and 12. They show the construction and execu-
tion times of the §-join for naive (nor), optimized
(opt), optimized with 2 reference points (opt2)
and Rtree (rtree). From the figure we can con-
clude that the metric index with two reference
points is overall better and that for relative low
selectivity also the single reference point performs
well.

-8 |
1 1
1 1
| |
I I
1 1
I I
| |
di- & di+d
Figure 5: Range Query
Figure 4: Distance Query
1400 T T T T T T T T T 300 T T T T T T T T T
e e
4 42 4
e i
1200 |- 16 -] 16
B -l B
- 64 % 64 -
1000 - . B T
200 L B
_ 8o f . 1 o .
H ‘ 4 5 ol . .]
£ - £
T 600 - . 4 -
X T
e 100 |-
400 [T 4
. »
50
200 |
0 _— 0 A
o om0 om0 2000 00 00w 70050003600 10t o im0 Eom a0 A0 00 c00m 7oi00 50003600 10t
Figure 6: Naive §-search Figure 7: §-search using Metric Index
30000 T T T T T T T T T 600 T T T T T T T T T
2o 2o
e e
i i
16 187
25000 [32 a- X 500 732 - o
64 3= 7 B4 e
20000 [~ B 400 |- B
\f«, 15000 q % 300 q
£ - - B
10000 L - R 200 1
T x
5000
o laais !
o om0 om0 2000 00 coom 70050003600 100
Figure 8: Naive §-join Figure 9: §-join using Metric Index
180000 T T T T T T T T T 60000 T T T T T T T T T
160000 8|
50000
140000 - B
120000 B 40000
& 100000 [4
£ & 30000
£ £
= 80000 B =
60000 [B 20000
40000 B
10000 [~ 1
20000 |-
o) 100000 200000 300000 400000 500000 600000 700000 800000 900000 le+06

002 003 004 005 006 007 008 009 01
Database size selectivity

Figure 11: Construction Cost Figure 12: Two Dimensions

7 Conclusions

In this paper we presented a cheap index struc-
ture to improve the query performance of joins
involving a distance metric. This index structure
works on any distance metric, as long as it obeys
the triangular inequality. There is no need for
a full metric. We showed that the index struc-
ture is profitable in higher dimensions for small
selectivities.

Several areas require further investigation.
First, our assumption of uniform distribution of
points in the space leads to a worst-case behavior,
especially in high dimensions. All points appear
at the border of the space and are equally spaced.
We conjuncture that data obtained from real-life
applications are extremely sparse and that clus-
tering of points (the focus of the query) lead to
good performance for acceptable ranges of selec-
tivity.

Second, the implementation of the n-
dimensional R-tree in Monet should be finished
to balance the results obtained so far. We con-
juncture that the effects of the dimensional curse
for such data structures are worse than those
experienced in our metric index. Experiments in
both directions are under way.

References

[1] J.L. Bentley. Multidimensional binary search
trees used for associative searching. Comm.

ACM, 18:509-517, 1975.

[2] Stefan Berchtold, Daniel A. Keim, and Hans-
Peter Kriegel. The X-tree: An index structure
for high-dimensional data. In Proceedings of

the 22nd VLDB Conference, 1996.

[3] Peter A. Boncz, Wilko Quak, and Martin L.
Kersten. Monet and its Geographic Exten-
sions: a novel Approach to High Performance

GIS Processing. In EDBT proceedings, 1996.

[4] A. Guttman. R-trees: a dynamic index struc-
ture for spatial searching. Proc. ACM SIG-
MOD, pages 47-57, 1984.

[5] King-Ip Lin, H. V. Jagadish, and Christos
Faloutsos. The TV-tree: An index structure
for high-dimensional data. VLDB Journal,
3(4):517-542, Januari 1994.

[6] David A. White and Ramesh Jain. Similarity
indexing with the SS-tree. Proc. 12th IEEE
International Conference on Data Engineer-
ing, pages 516-523, 2 1996.

